153 research outputs found

    Molecule‐Induced Radical Formation (MIRF) Reactions—A Reappraisal

    Get PDF
    Radical chain reactions are commonly initiated through the thermal or photochemical activation of purpose‐built initiators, through photochemical activation of substrates, or through well‐designed redox processes. Where radicals come from in the absence of these initiation strategies is much less obvious and are often assumed to derive from unknown impurities. In this situation, molecule‐induced radical formation (MIRF) reactions should be considered as well‐defined alternative initiation modes. In the most general definition of MIRF reactions, two closed‐shell molecules react to give a radical pair or biradical. The exact nature of this transformation depends on the σ‐ or π‐bonds involved in the MIRF process, and this Minireview specifically focuses on reactions that transform two σ‐bonds into two radicals and a closed‐shell product molecule

    Relativistic separable dual-space Gaussian Pseudopotentials from H to Rn

    Full text link
    We generalize the concept of separable dual-space Gaussian pseudopotentials to the relativistic case. This allows us to construct this type of pseudopotential for the whole periodic table and we present a complete table of pseudopotential parameters for all the elements from H to Rn. The relativistic version of this pseudopotential retains all the advantages of its nonrelativistic version. It is separable by construction, it is optimal for integration on a real space grid, it is highly accurate and due to its analytic form it can be specified by a very small number of parameters. The accuracy of the pseudopotential is illustrated by an extensive series of molecular calculations

    Natural History of Patients with Ischemia and No Obstructive Coronary Artery Disease: The CIAO-ISCHEMIA Study

    Get PDF
    Background: Ischemia with no obstructive coronary artery disease (INOCA) is common and has an adverse prognosis. We set out to describe the natural history of symptoms and ischemia in INOCA. Methods: CIAO-ISCHEMIA (Changes in Ischemia and Angina over One year in ISCHEMIA trial screen failures with INOCA) was an international cohort study conducted from 2014-2019 involving angina assessments (Seattle Angina Questionnaire [SAQ]) and stress echocardiograms 1-year apart. This was an ancillary study that included patients with history of angina who were not randomized in the ISCHEMIA trial. Stress-induced wall motion abnormalities were determined by an echocardiographic core laboratory blinded to symptoms, coronary artery disease (CAD) status and test timing. Medical therapy was at the discretion of treating physicians. The primary outcome was the correlation between changes in SAQ Angina Frequency score and change in echocardiographic ischemia. We also analyzed predictors of 1-year changes in both angina and ischemia, and compared CIAO participants with ISCHEMIA participants with obstructive CAD who had stress echocardiography before enrollment, as CIAO participants did. Results: INOCA participants in CIAO were more often female (66% of 208 vs. 26% of 865 ISCHEMIA participants with obstructive CAD, p\u3c0.001), but the magnitude of ischemia was similar (median 4 ischemic segments [IQR 3-5] both groups). Ischemia and angina were not significantly correlated at enrollment in CIAO (p=0.46) or ISCHEMIA stress echocardiography participants (p=0.35). At 1 year, the stress echocardiogram was normal in half of CIAO participants and 23% had moderate or severe ischemia (≥3 ischemic segments). Angina improved in 43% and worsened in 14%. Change in ischemia over one year was not significantly correlated with change in angina (rho=0.029). Conclusions: Improvement in ischemia and improvement in angina were common in INOCA, but not correlated. Our INOCA cohort had a similar degree of inducible wall motion abnormalities to concurrently enrolled ISCHEMIA participants with obstructive CAD. Our results highlight the complex nature of INOCA pathophysiology and the multifactorial nature of angina

    Faster maturation of selective attention in musically trained children and adolescents : Converging behavioral and event-related potential evidence

    Get PDF
    Previous work suggests that musical training in childhood is associated with enhanced executive functions. However, it is unknown whether this advantage extends to selective attention-another central aspect of executive control. We recorded a well-established event-related potential (ERP) marker of distraction, the P3a, during an audio-visual task to investigate the maturation of selective attention in musically trained children and adolescents aged 10-17 years and a control group of untrained peers. The task required categorization of visual stimuli, while a sequence of standard sounds and distracting novel sounds were presented in the background. The music group outperformed the control group in the categorization task and the younger children in the music group showed a smaller P3a to the distracting novel sounds than their peers in the control group. Also, a negative response elicited by the novel sounds in the N1/MMN time range (similar to 150-200 ms) was smaller in the music group. These results indicate that the music group was less easily distracted by the task-irrelevant sound stimulation and gated the neural processing of the novel sounds more efficiently than the control group. Furthermore, we replicated our previous finding that, relative to the control group, the musically trained children and adolescents performed faster in standardized tests for inhibition and set shifting. These results provide novel converging behavioral and electrophysiological evidence from a cross-modal paradigm for accelerated maturation of selective attention in musically trained children and adolescents and corroborate the association between musical training and enhanced inhibition and set shifting.Peer reviewe

    Neural Synchrony during Response Production and Inhibition

    Get PDF
    Inhibition of irrelevant information (conflict monitoring) and/or of prepotent actions is an essential component of adaptive self-organized behavior. Neural dynamics underlying these functions has been studied in humans using event-related brain potentials (ERPs) elicited in Go/NoGo tasks that require a speeded motor response to the Go stimuli and withholding a prepotent response when a NoGo stimulus is presented. However, averaged ERP waveforms provide only limited information about the neuronal mechanisms underlying stimulus processing, motor preparation, and response production or inhibition. In this study, we examine the cortical representation of conflict monitoring and response inhibition using time-frequency analysis of electroencephalographic (EEG) recordings during continuous performance Go/NoGo task in 50 young adult females. We hypothesized that response inhibition would be associated with a transient boost in both temporal and spatial synchronization of prefrontal cortical activity, consistent with the role of the anterior cingulate and lateral prefrontal cortices in cognitive control. Overall, phase synchronization across trials measured by Phase Locking Index and phase synchronization between electrode sites measured by Phase Coherence were the highest in the Go and NoGo conditions, intermediate in the Warning condition, and the lowest under Neutral condition. The NoGo condition was characterized by significantly higher fronto-central synchronization in the 300–600 ms window, whereas in the Go condition, delta- and theta-band synchronization was higher in centro-parietal regions in the first 300 ms after the stimulus onset. The present findings suggest that response production and inhibition is supported by dynamic functional networks characterized by distinct patterns of temporal and spatial synchronization of brain oscillations

    A four-dimensional probabilistic atlas of the human brain

    Get PDF
    The authors describe the development of a four-dimensional atlas and reference system that includes both macroscopic and microscopic information on structure and function of the human brain in persons between the ages of 18 and 90 years. Given the presumed large but previously unquantified degree of structural and functional variance among normal persons in the human population, the basis for this atlas and reference system is probabilistic. Through the efforts of the International Consortium for Brain Mapping (ICBM), 7,000 subjects will be included in the initial phase of database and atlas development. For each subject, detailed demographic, clinical, behavioral, and imaging information is being collected. In addition, 5,800 subjects will contribute DNA for the purpose of determining genotype-phenotype-behavioral correlations. The process of developing the strategies, algorithms, data collection methods, validation approaches, database structures, and distribution of results is described in this report. Examples of applications of the approach are described for the normal brain in both adults and children as well as in patients with schizophrenia. This project should provide new insights into the relationship between microscopic and macroscopic structure and function in the human brain and should have important implications in basic neuroscience, clinical diagnostics, and cerebral disorders

    Alteration of EGFR Spatiotemporal Dynamics Suppresses Signal Transduction

    Get PDF
    The epidermal growth factor receptor (EGFR), which regulates cell growth and survival, is integral to colon tumorigenesis. Lipid rafts play a role in regulating EGFR signaling, and docosahexaenoic acid (DHA) is known to perturb membrane domain organization through changes in lipid rafts. Therefore, we investigated the mechanistic link between EGFR function and DHA. Membrane incorporation of DHA into immortalized colonocytes altered the lateral organization of EGFR. DHA additionally increased EGFR phosphorylation but paradoxically suppressed downstream signaling. Assessment of the EGFR-Ras-ERK1/2 signaling cascade identified Ras GTP binding as the locus of the DHA-induced disruption of signal transduction. DHA also antagonized EGFR signaling capacity by increasing receptor internalization and degradation. DHA suppressed cell proliferation in an EGFR-dependent manner, but cell proliferation could be partially rescued by expression of constitutively active Ras. Feeding chronically-inflamed, carcinogen-injected C57BL/6 mice a fish oil containing diet enriched in DHA recapitulated the effects on the EGFR signaling axis observed in cell culture and additionally suppressed tumor formation. We conclude that DHA-induced alteration in both the lateral and subcellular localization of EGFR culminates in the suppression of EGFR downstream signal transduction, which has implications for the molecular basis of colon cancer prevention by DHA

    A global agenda for advancing freshwater biodiversity research

    Get PDF
    Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation.Peer reviewe
    corecore